

# The Japanese Science, Technology and Innovation Policy



Shiro TAKEGAMI
Director for SIP,
Cabinet Office of Japan

### < Outline >

### 1. Introduction of the CSTI

■ Council for Science, Technology and Innovation (CSTI)

### 2. Formulation of the 5th S&T Basic Plan

3. National Energy and Environment Strategy for Technological Innovation towards 2050 (NESTI 2050)

### 4. SIP and ImPACT

- Cross-Ministerial Strategic Innovation Promotion Program (SIP)
- Impulsing Paradigm Change through Disruptive Technologies Program (ImPACT)

### 5. Growth Strategy 2016

### Prior "Three Arrows": Japan Revitalization Strategy

**NEW** 

### **Three Arrows of the Economic Policies**

Three Arrows of the Economic Policies

Cabinet decision on Sep. 25, 2015

Cabinet decision on June 14, 2013

**Bold Monetary Policy** 

Flexible Fiscal Policy

Japan Revitalization
Strategy
New Growth Strategy

A robust economy that gives rise to hope

> Nominal GDP toward 600 trillion yen

<u>Dream-weaving Childcare</u> <u>Supports</u>

Desirable birthrate of 1.8

Social Security that provides reassurance

No one forced to leave their jobs for nursing care

### Three Action Plans

- I . Plan for the Revitalization of Japanese Industry
- II. Strategic Market Creation Plan
- ■. Strategy of Global Outreach

\*Achieving economic growth, creation of new value, and enhancement of industrial competitiveness through Science, Technology and Innovation

\*Integrating STI policy and Industrial policy

## **Administrative Organization for Promoting STI**

Chairperson

Prime Minister

### **Cabinet Office**

#### Roles:

- Support the Cabinet in formulating important policies and in overall coordination of Ministries
- Make total planning and coordination from a higher standpoint of view than other Ministries

### Councils on key policy fields

- Council on Fiscal and Economic Policy
- **Council for Science, Technology and Innovation**
- Advisory Council for National Strategic Special Zones
- Central Disaster Management Council
- Council for Gender Equality

## Council for Science, Technology and Innovation (CSTI)

Chair: Prime Minister Shinzo ABE

Member: 7 cabinet members (including PM & Minister

for S&T Policy) and 8 executive members

Secretariat: STI Bureau, CAO

#### <Main Functions>

- 1. Investigate and discuss basic S&T Innovation policies
- 2. Investigate and discuss S&T budgets and the allocation of human resources
- 3. Assess Japan's key R&D
- 4. Investigate and discuss Framework conditions for the promotion of innovation
- Basic policies on S&T (Budget Allocation, Basic Strategy etc)
- Consultation



Dr. Kazuo KYUMA Former Executive Adviser, Mitsubishi Electric Corp. (Full-time Position)



Dr. Yuko HARAYAMA Former Professor, Tohoku University (Full-time Position)



Dr. Motoko KOTANI Professor,

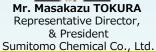
## **Executive Members of CSTI**

Response



Dr. Takahiro UEYAMA Former Vice President; Professor, National Graduate Institute for Policy Studies (Full-time Position)




Mr. Takeshi UCHIYAMADA Chairman of the board, Toyota Motor Corp.





Dr. Takashi ONISHI President. Science Council of Japan

Dr. Kazuhito HASHIMOTO President, National Institute for Tohoku University Materials Science

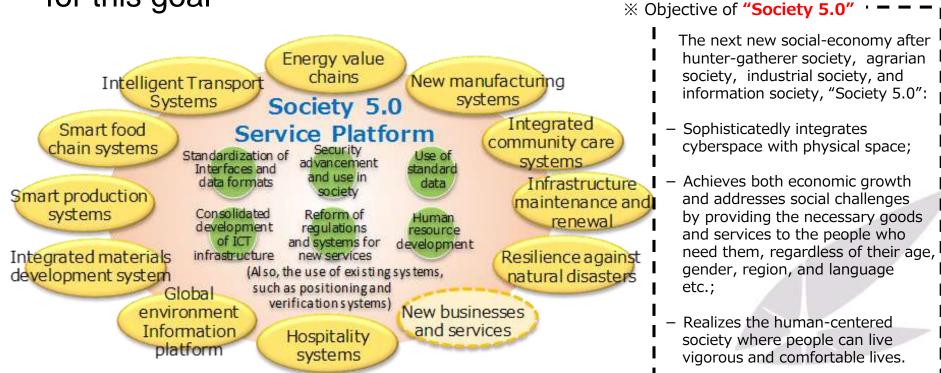


## 5th S&T Basic Law and S&T Basic Plans

- ◆ The Science and Technology Basic Plan is a comprehensive plan prepared by the Japanese government in accordance with the Science and Technology Basic Law in order to promote science and technology in Japan over a five-year term, based on a 10-year forward outlook.
- ◆ The 5th Basic Plan (FY2016 to FY2020), the first plan formulated by the Council for Science, Technology and Innovation (CSTI), is focused on enhancing "Science, Technology and Innovation (STI) measures."
- **♦** Executing this Basic Plan will require a wide spectrum of parties —including the government, academia, industry, and citizens
  - —to work together and lead to transform Japan into "the most innovation-friendly country in the world."

### **Table of contents**

- 1. Basic concepts
- 2. Acting to create new value for the development of **future industry** and **social transformation**
- 3. Addressing economic, social challenges
- 4. Reinforcing the "fundamentals" for STI
- 5. Establishing a systemic virtuous cycle of human resources, knowledge and capital for innovation
- 6. Deepening the relationship between STI and society
- 7. Enhancing functions for promoting STI


## Key elements of the 5th Basic Plan

## "society 5.0"

✓ aim at "systemization" of services and businesses, system advancement, and coordination between multiple systems;

✓ promote the measures needed to develop <u>a common platform</u>

for this goal





Society 5.0

Realizing a "Super Smart Society", by fusing cyberspace with physical-space through ICT.



### **Targets of Society 5.0**

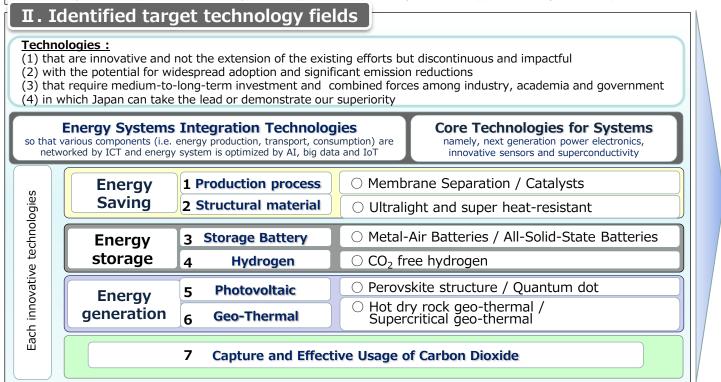
- Providing necessary amount of products and services to people in need when needed.
- Responding to various social needs so that everyone can receive high quality service.
- Providing an active and comfortable life, across age, gender, region and language.

Society 5.0 means to create an advanced society, which will happen after many development stages of human society, from a hunter-gathering, settled agriculture, industrialization to today's information

Reference: 5th Science and Technology Basic Plan Report, Council of Science, Technology and Innovation, Cabinet Office, Government of Japan.

http://www8.cao.go.jp/cstp/english/index.html






Contribution to Resolving Global Social Issues

- Sustainable
- Collaborative Creation

## Outlook on National Energy & Environment Strategy for Technological I. Strategy Innovation towards 2050 (NESTI 2050)

- O To meet the "2℃ target" referred in COP21, global GHG emissions need to be reduced to about 24 billion tons per year by 2050. Currently, global annual GHG emissions are approximated to 50 billion tons. Since the amount is projected to be about 57 billion tons based on submitted INDCs, approximately 30 billion tons of additional reduction is necessary. In so doing, it is essential to promote innovation for drastically reducing emissions on a worldwide scale.
- Cooking ahead to 2050, Japan has identified a number of innovative technologies with potential to make huge impacts on emission reductions, while assuming that the entire energy system will be optimized with the realization of "super smart society" (Society 5.0). R&D of the prioritized technologies will be promoted in the medium-to-long term, while identifying and addressing technological challenges.
  - $\Rightarrow$  Out of 30 billion tons of CO<sub>2</sub> reductions that are necessary to meet the 2  $^{\circ}$ C target, **several billion to 10 billion tons or more** of reductions are expected through this strategy.
- \* Based on the figures estimated by IEA. In the selected technological areas, the application of innovative technologies is added to the application of technologies whose development and demonstration have already been advanced.



## **Ⅲ.** Enhanced R&D systems

- 1. Forming R&D
  Structures as Unified
  Government Agencies
- Creation of Innovation Technology Seeds and Flexible Positioning
- 3. Mechanisms to Encourage Industry Investment in R&D
- 4. Promotion of International Coordination and Joint R&D

NEST) 2050

Leading the world through innovation while keeping mitigation efforts and economic growth compatible with each other.

## Headquarters for Science and Technology to foster innovation

> Promoting effective measures across ministries to create innovation beyond the borders of disciplines, ministries and sectors



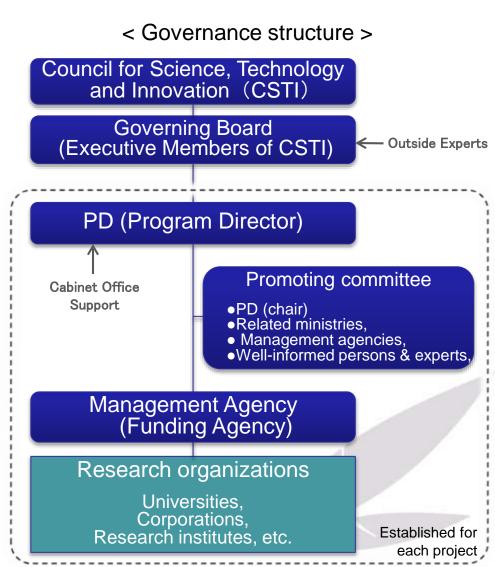
### **Three Arrows of Reinforcement of the HQ**

Improvement of the process for policy-making "S&T Budgeting Strategy Committee" and "Action Plans for S&T Priority Measures"

- ➤ Prioritized area: "Energy", "Next-generation infrastructures", "Local resources", "Health & Medical"
- Budget for FY2014: ¥335bil

SIP (Cross-Ministerial Strategic Innovation Promotion Program)

Budget for FY2016: ¥50bil


Impact (Impulsing Paradigm Change through disruptive Technologies)

Budget for FY2014-2018: ¥55bil

### SIP (Cross-Ministerial Strategic Innovation Promotion Program)

- Realizing Science, Technology and Innovation through promoting R&D overlooking from basic research to application and commercialization by cross-ministerial cooperation.
- Council for Science, Technology and Innovation (CSTI) defined the themes to solve societal issues and achieve economic growth
- CSTI appoints Program Directors (PDs) for each project and allocates the budget.

Established in 2013 Total ¥50B (budget for FY2016)



## 11 Themes of SIP

| Priority policy issues                 | Themes                                                                               | Objective                                                                                                                                                                                                                    |
|----------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Energy                                 | Innovative Combustion Technology                                                     | Improving fuel efficiency of automobile engines                                                                                                                                                                              |
|                                        | Next-Generation Power Electronics                                                    | Integrating new semiconductor materials into highly efficient power electronics system                                                                                                                                       |
|                                        | Structural Materials for Innovation (SM <sup>4</sup> I)                              | Developing ultra-strong and –light materials such as magnesium-, titanium-alloys and carbon fibers                                                                                                                           |
|                                        | Energy Carriers                                                                      | Promoting R&D to contribute to the efficient and cost-<br>effective technologies for utilizing hydrogen                                                                                                                      |
|                                        | Next-Generation Technology for Ocean Resources Exploration                           | Establishing technologies for efficiently exploring submarine hydrothermal polymetallic ore                                                                                                                                  |
| Next-<br>generation<br>infrastructures | Automated Driving System                                                             | Developing new transportation system including technologies for avoidance accidents and alleviating congestion                                                                                                               |
|                                        | Infrastructure Maintenance, Renovation and Management                                | Developing low-cost operation & maintenance system and long life materials for infrastructures                                                                                                                               |
|                                        | Enhancement of Societal Resiliency against Natural Disasters                         | Developing technologies for observation, forecast and prediction of natural disasters                                                                                                                                        |
|                                        | Cyber-Security for Critical Infrastructures                                          | Development of technologies that monitor, analyze, and defend control and communication system as well as confirm integrity and authenticity of system components to protect critical infrastructures against cyber threats. |
| Local<br>resources                     | Technologies for Creating Next-<br>Generation Agriculture, Forestry and<br>Fisheries | Realizing evolutionary high-yield and high-profit models by utilization of advanced IT etc                                                                                                                                   |
|                                        | Innovative Design/Manufacturing Technologies                                         | Establishing new styles of innovations arising from regions using new technologies such as Additive Manufacturing                                                                                                            |

## SIP (Cross-Ministerial Strategic Innovation Promotion Program)

### - Program Directors for SIP -

**Innovative Combustion Technology** 



Masanori Sugiyama Toyota Motor Corp.

Structural Materials for Innovation (SM4I)



Teruo Kishi Univ. of Tokyo, NIMS

**Energy Carriers** 



Shigeru Muraki Tokyo Gas Co., Ltd.

**Next-Generation Technology for Ocean Resources Exploration** 



**Tetsuro Urabe** Univ. of Tokyo, JMEC

**Next-Generation Power** Electronics



**Tatsuo Oomori** Mitsubishi Electric Corp.

Infrastructure Maintenance, Renovation and Management



Yozo Fujino Yokohama National Univ.

**Automated Driving System** 



Seigo Kuzumaki Toyota Motor Corp.

**Enhancement of Societal** Resiliency against **Natural Disasters** 



Masayoshi Nakashima Kyoto Univ.

**Innovative** 

Design/Manufacturing

**Technologies** 

**Cvber-Security for** Critical Infrastructures



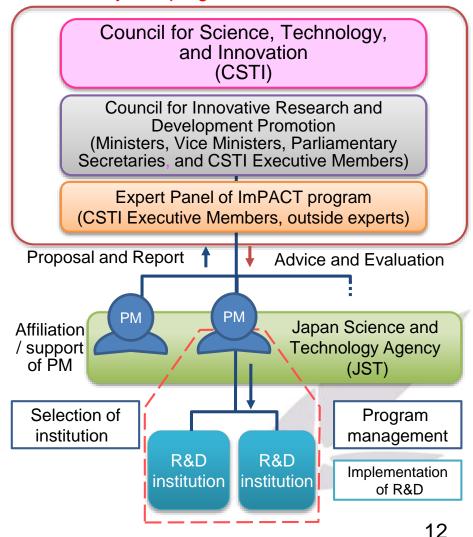
**Atsuhiro Goto** Institute of Information Security

Tech. for Creating Next-Generation Agriculture, **Forestry and Fisheries** 



Hokkaido Univ.




Naoya Sasaki Hitachi Ltd.



## ImPACT (Impulsing PAradigm Change through disruptive Technologies Program)

- Synergize the US DARPA modelwith the Japanese FIRST model
- Create disruptive innovations which revolutionize industries and society through high risk / high impact R&Ds.
- Giving great authority for planning, acting and managing the program to Program manager(PM).
- ➤ PM is expected to work as a producer, not as a researcher.
- ➤ Reinforcing the supporting system for PMs by following the previous Japanese Big Program, FIRST(\*) Program, with the help of JST(Japan Science & Technology Agency).
  - (\*) Funding Program for World-Leading Innovatie R&D on Science and Technology (2009-2013)

\55 billion fund was budgeted in FY2013 for 5 years program.



## **Program Managers for ImPACT**



**Kohzo ITO**Realizing an Ultra-Thin and Flexible Tough Polymer



Keisuke GODA
Cell Search Engine -Turning
Serendipity into Planned
Happenstance-



Yuji SANO
Ubiquitous Power Laser for Achieving a Safe, Secure and Longevity Society



Masashi SAHASHI
Achieving Ultimate Green IT
Devices with Long Usage
Times without Charging



Yoshiyuki SANKAI Innovative Cybernic System for a "ZERO Intensive Nursing-care Society"



Takane SUZUKI
Super High-Function
Structural Proteins to
Transform the Basic
Materials Industry



Satoshi TADOKORO
Tough Robotics Challenge
(TRC)



Reiko FUJITA

Reduction and Resource
Recycle of High-level
Radioactive Wastes through
Nuclear Transmutation



Reiko MIYATA

Ultra-high Speed Multiplexed
Sensing System beyond Evolution
for the Detection of Extremely
Small Quantities of Substances



Takayuki YAGI
Innovative Visualization
Technology to Lead to
Creation of a New Growth
Industry



Yoshinori YAMAKAWA
Actualize Energetic Life by
Creating Brain Information
Industries



Yoshihisa YAMAMOTO
Advanced Information
Society Infrastructure
Linking Quantum Artificial
Brains in Quantum Network



Seiko SHIRASAKA
Small Synthetic Aperture
Radar Satellite System for
On-Demand Observation



Hiroyuki NOJI
Artificial Cell Reactor
Technology for an Enriched
and Secure Society and New
Bioengineering



Kanako HARADA
Bionic Humanoids Propelling
New Industrial Revolution



Hiroshi HARADA An Ultra Big Data Platform for Reducing Social Risks



### "Growth Strategy 2016" toward nominal GDP 600 trillion yen

- Implementing difficult structural reforms (reforms on bedrock regulations (energy, agriculture, medical care etc.) / initiatives through National Strategic Special Zones)
- Moving forward toward the elimination of "Six Handicaps to growth" (e.g. appreciation of yen, high corporate tax rate, delay in the conclusion of TPP)
- Employment, corporate profits at historically high level
- However, actions of private companies (investments, wage hikes etc.) still lack force
- "3 challenges", to accelerate corporate actions, in the context of the virtuous cycle of economy in motion

  ①Stimulate potential demand and <a href="mailto:create/expand">create/expand new promising markets</a> to raise GDP to 600 trillion yen

  ("10 Strategic public-private joint projects")
  - ②Enhance drastically productivity to overcome decreasing population and workforce shortage
  - ③Enhance capabilities of individuals to facilitate transformation of the industrial structure

### 1. "10 STRATEGIC PUBLIC-PRIVATE JOINT PROJECTS" toward GDP 600 trillion yen

### 1-1: Creation of new promising markets

(1) Realize the 4th Industrial Revolution (e.g. IoT, Big Data, A.I., Robots)

[Creation of added value: 30 trillion yen (by 2020)]

2 Toward a world leading health care country

[Market size: 16 trillion yen (2011) => 26 trillion yen (2020)]

3 Overcome environment-energy constraints and expand investments

[Energy related investments: 18 trillion yen (2014FY) => 28 trillion yen 2030FY)]

4 Foster sport sector to become a growing industry

[Market size: 5.5 trillion yen(2015) => 15 trillion yen(2025)]

**5** Revitalize markets for transaction of existing houses and reform

[Market size: 11 trillion yen(2013) =>20 trillion yen(2025)]

### 1-2: Further promotion of Local Abenomics

**<u>6 Enhance productivity in service industries</u>** 

[Added value: 343 trillion yen (2014) => 410 trillion yen (2020)]

Olnnovate small, medium and intermediate-sized firms

® Promote proactive agriculture and exports

[Market size of vertical integrated (from production to sales) agriculture: 4.7 trillion yen

Make tourism a key industry

(2013FY) => 10 trillion yen (2020FY)]

[consumption by foreign visitors\*: 3.5 trillion (2015) => 8 trillion yen (2020) => 15 trillion yen (2030) ]

### 1-3: Stimulation of domestic consumer sentiment

Stimulate domestic consumer sentiment through public-private sector collaboration etc.

### 2. REGULATORY AND INSTITUTIONAL REFORMS TO REALIZE REVOLUTION IN PRODUCTIVITY

- > Introduction of new mechanism for regulatory and institutional reforms
- > Utilization of National Strategic Special Zones to accelerate structural reforms
- > Further reinforcement of Corporate Governance
- > Further utilization of private sector resources to public services / facilities (PPP/PFI etc.)

[Projects volume: 2.4 trillion yen (FY2013-14)=> 21 trillion yen (FY2013-2022)]

## 3. PROMOTION OF INNOVATION / PROVISION OF HUMAN RESOUCES WITH CHALLENGER'S SPIRITS

- > Promotion of innovation and venture business
- > Development and securement of human resources who drive the economic growth
- > Creation of employment environment and promotion of social participation of women, to remove the constraints to growth

#### 4. TAKING IN GROWING MARKET OUTSIDE

- > Support the expansion of SMEs to international markets, making the most of TPP

  [13.8 trillion yen (2013FY) => 25.2 trillion yen (2020FY)]
- > Expansion of the exports of infrastructure systems

[16 trillion yen (2013) => 30 trillion yen (2020)]

> Promotion of inward foreign direct investment to Japan

[24.4 trillion yen (2015) => 35 trillion yen (2020)]

Promotion of conclusion / revision of economic partnership agreements (EPAs), investment agreements and tax treaties

#### 5. Utilization of growing momentum for reforms

- > Promote leading projects for year 2020
- considering that these technologies could continue to be in practical use after 2020 as a legacy of Tokyo Olympic and Paralympic games; Automated driving system, Decentralized energy system, Advanced robot technologies etc.